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A three-dimensional hierarchical "nite element formulation of Biot's equation for low
frequency elasto-acoustic wave propagation in #uid saturated porous media based on
a weak formulation with #uid displacement and solid displacement as dependent variables is
presented. A global error measure for evaluation of the convergence is proposed. Numerical
simulations of an air saturated polyurethane foam material show faster convergence for the
hierarchical extensions than for linear and quadratic serendipity "nite element mesh
re"nement extensions.
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1. INTRODUCTION

Flexible lightweight #uid-saturated porous materials are commonly used in aircraft and
ground transportation vehicles for a thermal insulation and as a sound absorbing material.
Since virtual design has become very important in the automotive industry, the interest of
numerical noise and vibration simulation tools for porous materials has increased. An
accurate modelling of such materials at an early design stage is crucial to obtain optimal
noise and vibration performance. To model mechanical waves being transmitted through
and dissipated in the porous material for noise control purposes, the elastic and dissipative
properties of both the solid frame and the saturating #uid has to be taken into account.
Exceptions may be made for some cases where idealized simpli"cations are adequate e.g.
rigid frame and in"nitely #exible frame.

Biot presented in 1956 [1] a three-dimensional theory for coupled frame-#uid wave
propagation in #uid saturated porous media, treating the solid frame and the saturating
#uid as two separate co-located coupled continua. Two second order coupled complex
partial di!erential equations were derived from this theory.

Three-dimensional "nite element solutions to Biot's equations for elasto-acoustic
wave propagation, have been extensively discussed in the literature during the last decade:
see e.g., references [2}5]. Di!ering in the choice of dependent variables, i.e., frame
displacement in conjunction with either #uid displacement; #uid pressure; #uid
displacement and #uid pressure; #uid displacement potential and #uid pressure, most work
published till date has invoked the use of a traditional FE basis; i.e., linear and quadratic
shape functions.

A common concern of all the di!erent FE solutions of Biot's equations is the question of
convergence. It is clear that an FE basis good enough to yield a required accuracy in the
predicted results, may be constructed through a re"nement of the mesh (h-convergence).
However, as an alternative to mesh re"nement the FE basis may be enriched with
0022-460X/01/340633#20 $35.00/0 ( 2001 Academic Press
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polynomials with increasingly higher degree until the required accuracy is obtained
(p-convergence).

With the aim of "nding more e$cient numerical solution methods of Biot's equation, the
contribution of this paper is to apply a hierarchical ,nite element basis on
a Bubnov}Galerkin formulation of the Biot equations using the solid displacement and the
#uid displacement as dependent variables. This choice of dependent variables gives
a symmetric formulation and hence a symmetric system of equations without any
assumptions of rotational free #uid. The symmetry of the equations has bene"ts while many
commercial FE codes use symmetric equation solvers. On the contrary, the #uid pressure
formulation gives an unsymmetric formulation and the #uid displacement potential, #uid
pressure formulation gives a symmetric formulation but imposes rotational free assumption
on the #uid.

The hierarchical basis used is a generalization of a two-dimensional hierarchical basis,
introduced by Houmat 1997 [6], into three dimensions. An augmented Hooke's law (AHL)
damping description of the solid frame based on augmented thermodynamic "elds
presented by Dovstam 1995 [7] and 1997 [8] (see Appendix B) is included in the
formulation.

A three-dimensional numerical example involving material data of an air saturated
polyurethane foam, is presented. The convergence of hierarchical extensions (p-extensions)
of a single element is studied in terms of a proposed global error measure suitable for
complex partial di!erential equations of this kind.

Since this paper focuses on the hierarchical formulation and the convergence, issues
concerning the complexity of the implementation of hierarchical FEM, e.g., coupling
between elements, Gauss quadratures and derivatives for curve-linear geometries will be left
out to be discussed in a forthcoming paper. The convergence of the p-extensions is
compared with mesh re"nement extensions (h-extensions) of hexahedronal linear 8-node
element and 20-node quadratic serendipity elements [9] for the purpose of investigating the
computational e$ciency of the p-method in this application.

2. VARIATIONAL FORMULATION OF THE 3-D BIOT EQUATIONS

Upon assuming a time harmonic variation, Biot's equations may be written in Cartesian
tensor components as
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All material parameters are de"ned in Appendices G and B.
Assume constant material properties in a regular domain X3R3 bounded by C3R3.

Equations (1a) and (1b) are "rst multiplied with arbitrary, piecewise di!erentiable, linearly
independent, real-valued weight functions vs

i
and vf

i
and are then integrated over the

domain X to obtain a weak form of Biot's equations. The weight functions are restricted to
satisfying homogenous Dirichlet boundary conditions on those parts of the boundary
where Dirichlet conditions (not necessarily homogeneous) are imposed. The integrals are
expressed here in the form of inner products which are de"ned in Appendix A:
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Figure 1. Schematic sketch of the domain with boundary conditions. (D means Dirichlet and N means
Neumann boundary conditions.)
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Integration by parts of equations (2a) and (2b) yields
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The boundary C is divided into four parts, see Figure 1, and the boundary conditions are
formulated as
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3. DERIVATION OF THE DYNAMIC STIFFNESS MATRIX AND LOAD VECTOR

De"ne discrete approximations to us
i
(x) and uf

i
(x) as "nite sums of trial functions

multiplied by undetermined coe$cients:
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Essentially the same basis is used for the test functions as for the trial functions except that
those functions not ful"lling the restrictions described in previous section are excluded:
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If equations (5) and (6) are inserted in equations (3a) and (3b) the boundary value problem
turns into a "nite set of simultaneous linear equations of the form
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are derived as
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(no summation convention over i and j in equations (8a)}(9b)).
Due to the choice of test functions, Ksf"KfsT if no inhomogenous Dirichlet conditions

are imposed. Otherwise some elements of cs and/or cf are prescribed to approximate the
displacement on those parts of the boundary where the Dirichlet conditions are imposed.
The equation system will then be reduced to a symmetric system where the prescribed d.o.f.
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(degrees of freedom) are removed from the unknown in the left-hand side and are moved to
the right-hand side.

4. HIERARCHICAL FINITE ELEMENT BASIS

The previous section dealt with an arbitrary regular domain. In this section, a single,
parallelepiped-shaped "nite element subdomain will be considered. Coupling conditions
between hierarchical elements (compatibility and equilibrium) will not be discussed in the
present paper. The hierarchical basis is de"ned by the function terms in function series (5).
The m

i
th term of the ith component direction is given by the product of three polynomial

functions as follows:

umi
i

(x) $%&"

3
<
k/1

f
lk A

2x
k

¸
k
B ,

2x
k

¸
k

3[!1, 1], (12)

where

k3M1, 2, 3N (13)

is the ordinal number of the spatial co-ordinate direction,
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the polynomial number for the kth co-ordinate direction, and pi
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is the ordinal number of the term in the ith direction. From equations (15) and (16) it is clear
that
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It may be noted that for p"0 and 1 the coe$cients cs
im

and cf
iq

in equation (5) are
interpreted as nodal displacements for ordinary linear and quadratic Lagrange elements
respectively. For p'1 such interpretations cannot be made.

The functions f
l
, l'2, are called hierarchical functions and p is subsequently the number

of these. Hence the highest occurring polynomial degree is p#1. These functions are
derived from Rodrigue's form of the Legendre orthogonal polynomials [6]. The "rst eight
hierarchical functions are shown in Appendix C.

5. CONVERGENCE

In this section, a global error measure which is easy to compute is proposed. The theory is
not limited to the hierarchical basis but can be applied on any FE basis feasible for this kind
of problems.

De"ne us $%&"Mus
i
N, uf $%&"Muf

i
N. Equations (1a) and (1b) may be written in the form

C
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where Lss, Lsf, Lfs and Lff are the linear di!erential operators in equations (1a) and (1b).
Further, de"ne vs $%&"Mvs

i
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i
N. Due to the linear independence between vs and vf,

equations (2a) and (2b) may be written as one scalar equation:
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Equation (20) suggests that the solid and #uid displacement can be treated as one
six-dimensional displacement "eld instead of two three-dimensional ones. This enables the
use of a more compact formalism in this section. Introduce the six-dimensional
displacement vectors

u $%&"C
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ufD , v $%&"C
vs

vfD . (21)

De"ne a sesquilinear form B (u, v) as the sum of the left-hand sides of equations (3a), (3b) and
the antilinear form F (v) as the sum of the boundary terms: i.e., the right-hand sides of
equations (3a), (3b) (see Appendix D). These right-hand sides represent all external loads
imposed and are called the external virtual work. (This is equivalent to integrating equation
(20) by parts and collecting the boundary terms on the right-hand side and the volume
terms on the left-hand side.)

Then the weak boundary value problem in equations (3a) and (3b) may be written in the
compact form:

G
Find u3<"Mv Dv3H1(X ), vs"vsC on (CDsDf#CDsNf ),

vf"vfC on (CDsDf#CNsDf )N,

B (u, v)"F (v) ∀v3<0"Mv Dv3H1(X), vs"0 on (CDsDf#CDsNf),

vf"0 on (CDsDf#CNsDf )N,

(22)
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where

H1(X) $%&"H1(X)]H1(X )]H1(X )]H1(X )]H1(X )]H1(X ) (23)

is the Cartesian product between six Sobolev spaces, one for each displacement component.
The corresponding "nite-dimensional problem
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on the "nite dimensional "nite element subspace <
FE

has a unique solution which is an
approximate solution to equation (22) and is called the B-orthogonal projection onto<

FE
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the exact solution in the sense of
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FE

, (25)

according to equations (22) and (24).
Now, the error function is de"ned as

e $%&"u!u
FE

, (26)

and a global measure of the error is de"ned as

E"DF (e6 ) D12. (27)

The proposed measure may be proven to be bounded by the square root of theH1(X )-norm
of the error (see Appendix E). Thus it follows that E goes to zero as the approximate
solution converges in the H1(X )-norm. However, the error measure is not proven to be
bounded below by the same norm.

In the present paper, no mathematical theory for an a priori or a posteriori error
estimate based on this error measure will be developed. The global error measure E is used
here to study the convergence of hierarchical extensions compared to mesh re"nement
extensions. A problem that occurs is that the exact solution which has to be known to
calculate the error function is not available. However, an approximate solution with an
error, orders of magnitude smaller than that of the studied extensions, may be used as
reference instead of the exact solution. Such approximate solutions are referred to here as
reference solutions.

In order to compare the quality of solutions for di!erent frequencies or with di!erent
loads, a relative error measure is de"ned as the one in equation (27) but normalized with
DF(u6 ) D 12 : i.e.,

E
rel
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DF(u6 ) D 12
, (28)

which may also be written as
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If a reference solution is used instead of the exact solution the error measure is
approximated to

E
rel
+K

F (u6
ref

)!F (u6
FE

)

F (u6
ref

) K
1
2
. (30)

This approximation will be used to evaluate the convergence in the next section. F(u6
FE

) is
easily computed from the vector scalar product of the result displacement vector and the
load vector in the FE matrix equation (7): i.e.,

F (u6
FE

)"C
cs

cfD
t

C
f s

ffD . (31)

6. NUMERICAL EXAMPLE

As a numerical example a parallelepiped-shaped domain with dimensions ¸
1
"0)2m,

¸
2
"0)3m, ¸

3
"0)5m and material parameters representing a polyurethane foam material

with open cell structure is used. The material data are given in Appendix F. Features of this
material are discussed in reference [14].

Both the solid frame and the #uid are considered free (i.e., homogenous Neumann
condition) on all boundaries except on the boundary surface at x

3
"!¸

3
/2, where

a uniformly distributed load is applied exclusively on the solid frame in the positive
3 direction (i.e. Re[¹K

3
]'0, Im[¹K

3
]"¹K

1
"¹K

2
"0). Note that this load is exactly

represented in the hierarchical basis for p"0 and hence for any p and also for any basis of
mesh re"nement extensions.

The displacements were calculated for 30 equally distant frequencies in the interval
10}300Hz. In the calculations performed, the values of p were set to be equal for all
displacement components in all co-ordinate directions, although this is not necessary in the
proposed formulation which allows the values to be di!erent, possibly allowing higher
computational e$ciency to be reached.

7. RESULT AND DISCUSSION

In the present study, the result of p"16 has been used as a reference solution for
frequencies up to 190Hz. If the FE approximation converges to the exact solution with
increasing p, the di!erence between F (u6

FE
) of two consecutive extensions converges to zero.

Figure 2 strongly indicates that the error for p"16 may be neglected in comparison with
the error for p"11 and that the result for p"16 can be used as a reference instead of the
exact solution when estimating the error for p)11. One may observe that when the p"11
solution is very accurate at low frequencies the quotient is quite small, but at higher
frequencies when the p"11 solution becomes less accurate the quotient is large as the
p"16 solution is still very accurate, and at even higher frequencies when the p"16
solution also becomes less accurate, the quotient is again small. Thus, the p"16 solution is
much more accurate than the p"11 solution in the actual frequency range 10}300 Hz and
the p"16 solution is consequently an accurate reference solution when studying the
convergence rate of hierarchical extension at least up to p"11.

The convergence in E
rel

for a sample of frequencies 30}290Hz is shown in Figure 3.
A type of &&cut-on'' phenomenon, i.e., the speed of convergence rapidly increase at di!erent



Figure 2.
F(u6

FE
)(p/12)!F(u6

FE
)(p/11)

F(u6
FE

)(p/16)!F(u6
FE

)(p/15)
versus frequency (Hz).

Figure 3. Convergence in E
rel

for hierarchical extension p"0 to 11 at di!erent frequencies 30}290Hz. }h}},
30Hz; }e}}, 50Hz; }s}}, 90 Hz; }*]}, 130Hz; }*}}, 170Hz;*#}, 250Hz; **, 290Hz.
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polynomial degrees, is observed in the convergence at di!erent polynomial degrees with
di!erent convergence rates for each frequency. The general trend is that for higher
frequencies (and shorter wavelength) a higher polynomial degree is required for the
convergence to cut on. However monotonic convergence is not guaranteed as seen in
Figure 3, e.g., for 130Hz, 250Hz. Monotonic convergence is only guaranteed asymptotically



Figure 4. Solid phase displacement in 3 direction at 130Hz for x
1
"0)13, x

2
"0)21, 0)x

3
)0)5 (real part).

}} } , p"4; ......, p"5; ) } ) } ) , p"7; **, p"16.

Figure 5. Fluid phase displacement in 3 direction at 130 Hz for x
1
"0)13, x

2
"0)21, 0)x

3
)0)5 (real part).

}} } , p"4; ......, p"5; ) } ) } ) , p"7; **, p"16.
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when the number of d.o.f. approaches in"nity [13]. The stair-like behavior which can be
seen for some frequencies in Figure 3 is mainly due to assymetric or symmetric properties of
the exact solution. Note that every second p provides an additional subset of symmetric or
assymetric shape functions respectively.

h-extensions, using linear and quadratic shape functions, has been computed and the
convergence compared with the hierarchical extensions in Figures 6}9. Linear extensions



Figure 6. Convergence in E
rel

for hierarchical extension p"0 to 11 at 30 Hz compared with h-extensions of
linear and quadratic elements. }*}}, linear; }h}}, quadratic; }s}}, hierarchical.

Figure 7. Convergence in E
rel

for hierarchical extension p"0 to 11 at 110 Hz compared with h-extensions of
linear and quadratic elements. }*}}, linear; }h}}, quadratic; }s}}, hierarchical.
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were computed for 1, 2, 4, 8, 10, 12, 14, 16, 18, 20 elements and the quadratic serendipity
extensions for 1}10 elements on each side of the parallelepiped-shaped domain. Note that
E
rel

for the hierarchical extension p"0 always coincides with the linear h-extension for
1 element per side as expected because the solutions are identical. The same can be noticed
for the serendipity extension for 1 element per side and the hierarchical extension for p"1,
but the coincidence is only approximative and the number of d.o.f. di!er, because the



Figure 8. Convergence in E
rel

for hierarchical extension p"0 to 11 at 130 Hz compared with h-extensions of
linear and quadratic elements. }*}}, linear; }h}}, quadratic; }s}}, hierarchical.

Figure 9. Convergence in E
rel

for hierarchical extension p"0 to 11 at 190 Hz compared with h-extensions of
linear and quadratic elements. }*}}, linear; }h}}, quadratic; }s}}, hierarchical.
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serendipity element lacks the mid-surface and the mid-volume nodes. To illustrate what
a certain value of E

rel
corresponds to, the deformation of the solid phase of the porous

material along a line inside the porous material has been included. A value of E
rel

less than
10~2 corresponds to a solution which cannot be separated from the exact solution by visual
inspection of a deformation plot, see e.g., for p"7 at 130Hz given in Figures 4, 5 and 8. It



Figure 10. Computational time per degree of freedom for hierarchical extension p"0 to 12 compared with
h-extensions of linear and quadratic elements. }s}}, linear; }h}}, quadratic; }*}}, hierarchical.
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may also be noted that although the solid frame alone is excited by a distributed load, the
#uid moves almost with the same amplitude as can be seen in Figures 4, 5.

As can be seen in Figure 10 the computational time per d.o.f. is of the same order of
magnitude for the h-extensions and the p-extensions. A di!erent symmetric solver was
however used for the h-extensions than for the p-extensions.

For all calculated frequencies the hierarchical extensions converge considerably faster
than the linear and the serendipity h-extensions when p exceeds a certain value, the
convergence cut-on, which seems to increase with higher frequency. Below that value of
p the hierarchical extensions converge at approximately the same rate as the serendipity
h-extensions. In such a region some mesh re"nements, keeping p constant, are possibly more
e$cient before increasing the value of p any further.

Figure 11 shows the absolute value of 1
2
F (u6

FE
) for p"10 in the frequency interval

10}190 Hz. 1
2
F(u6

FE
) may, for real loads, be interpreted as

K
1

2
F (u6

FE
) K" K

P

u K , (32)

where P is the complex power induced by the boundary load.
The peak at 62Hz represents the fundamental eigenmode which has an antisymmetric

one wavelength shape. Three to four other eigenmodes are identi"ed in the frequency
interval. No signi"cantly di!erent convergence behavior is observed close to resonance (e.g.,
at 60Hz) than at other frequencies.

8. CONCLUSION

A hierarchical formulation of Biot's equations is presented and a numerical example
shows faster convergence in terms of E

rel
than h-extensions of linear and serendipic elements



Figure 11. D1
2
F(u6

FE
) D for p"10 in the frequency interval 10}200Hz.
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especially when small errors are required. Further investigation of the hp-convergence
(i.e., combined use of hierarchical extensions and mesh re"nement) of this method is needed
to choose an optimal strategy for "nding a solution of required accuracy.
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APPENDIX A: INNER PRODUCT NOTATION

The inner product operator is de"ned as

(V, W)K $%&" PK A
M
+
i/1

<
i
=M

iBdK,

where V and W are vector functions with M elements each (or scalar functions when
M"1), K is the integration domain (line, surface or volume depending on the application).
An overbar denotes complex conjugate.

APPENDIX B: AUGMENTED HOOKE'S LAW PARAMETERS

For isotropic material the augmented Hooke's law (AHL) LameH moduli kL and jL are
de"ned as the corresponding static elastic parameters k and j which are related to the
engineering elastic constants, Young's modulus E and the Poisson ratio l by

k"
E

2(1#l)
and

j"
El

(1#l)(1!2l)
,

but augmented with complex frequency dependent damping functions dk (u) and dj (u)
respectively [8]. The imaginary part of the damping functions corresponds to dissipation
and the real part corresponds to dynamic sti!ness. At 0 Hz the damping functions are equal
to zero.

kL $%&"k (1#dk), jL $%&"j(1#dj)

where

dj (u) $%&"

Na
+
l/1

iu
iu#b

l

)
3u2

l
#4u

l
k
l

j ) a
l

,

dk (u) $%&"

Na
+
l/1

iu
iu#b

l

)
2k2

l
k ) a

l

.

a
l
, b

l
, k

l
, u

l
are AHL parameters and N

a
is the number of assumed relaxation processes.
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APPENDIX C: HIERARCHICAL POLYNOMIAL

The "rst eight hierarchical functions are

f
3
(s)"
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2
s2!
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, f

4
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2
s3!

1

2
s, f

5
(s)"
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3

4
s2#
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8
,

f
6
(s)"
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5

4
s3#

3

8
s, f

7
(s)"
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48
s6!

35

16
s4#
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16
s2!

1

16
,

f
8
(s)"

99

48
s7!

63

16
s5#

35

16
s3!

5

16
s,

f
9
(s)"

429

128
s8!

231

32
s6#

315

64
s4!

35

32
s2#

5

128
,

f
10

(s)"
715

128
s9!

429

32
s7#

693

64
s5!

105

32
s3#

35

128
s.

APPENDIX D: DEFINITION OF FORMS B( ) , ) ) AND F( ) )

B(u, v) $%&"kL (us
i,j

, vs
i, j

)X#kL (us
j, i

, vs
i, j

)X#jL (us
j,j

, vs
i, i

)X

!u2o
11

(us
i
, vs

i
)X#iub(us

i
, vs

i
)X,

#Q(uf
j, j

, vs
i, i

)X!u2o
12

(uf
i
, vs

i
)X!iub(uf

i
, vs

i
)X ,

#Q(us
j,j

, vf
i, i

)X!u2o
12

(us
i
, vf

i
)X!iub(us

i
, vf

i
)X ,

#R(uf
j,j

, vf
i, i

)X!u2o
22

(uf
i
, vf

i
)X#iub(uf

i
, vf

i
)X , (D.1a)

F (v) $%&"(¹K
i
, vs

i
)C

s
#

Q

R
(!pfn

i
, vs

i
)C

s
#

Q

3KK
(!psn

i
, vf

i
)C

f
#(!pfn

i
, vf

i
)C

f
. (D.1b)

APPENDIX E: BOUNDEDNESS OF F( ) )

Proposition 1. &M, 0(M(R: DF (v) D)MEvEH1(X)
∀v3<LH1(X)

where

EvE2H1(X)
$%&"

3
+
i/1

(v
i
, v

i
)X#

3
+
i/1

3
+
j/1

((vs
i,j

, vs
i,j

)X#(vf
i, j

, vf
i, j

)X). (E.1)

Proof. F (v) may be written as (A, v)C , where A contains all prescribed boundary loads
(which are "nite). By the Cauchy}Schwartz inequality

D(A, v)C D)EAE
L2 (C)

) EvE
L2(C)

.,C
1
EvE

L2(C)
.
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C
1

is "nite since the boundary loads are "nite. By the trace theorem [15]

&C
2
: EvE

L2(C)
)C

2
EvEH1(X)

.

Let M"C
1
C

2
and hence

DF (v) D)MEvEH1(X)
.

APPENDIX F: MATERIAL DATA

Young's modulus E"70)0]103Pa
The Poisson ratio l"0)39
Porous material density o

m
"22)1kg/m3

Porosity /"0)98
Fluid density o

0
"1)204kg/m3

Fluid dynamic viscosity kf"1)84]10~5

Fluid ratio of speci"c heats c"1)4
Prandtl number Pr"0)71
Viscous characteristic length K"1)1]10~4m
Thermal characteristic length K@"7)42]10~4m
Static #ow resistivity of foam pstatic"3)75]103kg/m3s
Tortuosity a

=
"1)17

Thermal form factor M@"0)25
Gas constant (for air) Rgas"286)7m2/(s2K)
Absolute temperature ¹"293)15K
Augmented Hooke's law parameters

a
1
"1)0, b

1
"3)1416, u

1
"71)95, k

1
"71)30

a
2
"1)0, b

2
"6)28]104, u

2
"0, k

2
"396)74.

APPENDIX G: BIOT THEORY PARAMETERS

The parameters used in Biot's equations (1a) and (1b) b, o
11

, o
12

, o
22

, Q, R are derived
from the following relations [14] and the solid phase material parameters kL , jL are de"ned in
Appendix B.

The kinematic viscosity

lf"kf/o
0
. (G.1)

The viscous permeability

k
0
"kf/pstatic. (G.2)

Frequency

uJ "uk
0
a
=

/lf/. (G.3)
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Viscous-shaped factor

M"k
0
8a

=
//K2. (G.4)

Viscous drag coe$cient

b"A1!
M

2
iu8 B1@2pstatic/2. (G.5)

Thermal static permeability

k@
0
"M@/K@2/8. (G.6)

Inertial coupling factor

o
12
"!o

0
/ (a

=
!1). (G.7)

Corrected mass density for the solid phase

o
11
"o

m
!o

12
. (G.8)

Corrected mass density for the #uid phase

o
22
"o

0
/!o

12
. (G.9)

Adiabatic bulk modulus for the #uid

K
a
"cRgas¹o

0
. (G.10)

Inverse thermal di!usivity

l@"l/Pr. (G.11)

Thermal angular frequency

uJ @"uk@
0
/l@/ . (G.12)

Thermal response factor

b"c!(c!1) C1!
1

iuJ @ A1!
M@
2

iu8 @B
1@2

D
~1 1

/
. (G.13)

Corrected bulk modulus for the #uid

K
f
"K

a
/b . (G.14)

Dilatational coupling factor

Q"(1!/)K
f
. (G.15)
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Homogenized bulk modulus of the #uid phase

R"K
f
/. (G.16)

APPENDIX H: NOMENCLATURE

OPERATORS AND FUNCTIONS

! n!"n ) (n!1) )2) 1 (faculty)

!! n!!"G
n ) (n!2) )2) 1 n is odd

n ) (n!2) )2) 2 n is even
(semi faculty)

int integer part

Superscripts

( the elastic parameter is augmented according to Appendix B
f #uid part of porous medium
* (overline) denotes complex conjugate
i component ordinal number in Cartesian co-ordinate system
m, n, q, r ordinal number of term in function series
s solid part of porous medium
t matrix transpose

Subscripts

FE approximative solution using a "nite element space
i, j, k component ordinal number in Cartesian co-ordinate system
l ordinal number of hierarchical polynomial
,i partial derivative with respect to the Cartesian component x

i

<ariables

b viscous drag coe$cient
B( ) , ) ) sesquilinear complex functional containing left-hand side in the weak formulation
e six-dimensional error function
F( ) ) antilinear complex functional containing loads and natural boundary conditions
K bulk modulus of solid frame
n
i

unit normal vector outward the boundary
N number of terms in function series
p number of hierarchical polynomials
pf homogenized #uid phase pressure
ps homogenized pressure in the solid frame
Q dilatational coupling factor between the #uid phase and the solid frame
R bulk modulus of the #uid phase
us
i

displacement component in Cartesian co-ordinate direction i for the solid part m
uf
i

displacement component in Cartesian co-ordinate direction i for the #uid part m
vs
i

test function for displacement component in Cartesian co-ordinate direction i for the
solid part

vf
i

test function for displacement component in Cartesian co-ordinate direction i for the
#uid part

us solid frame displacement vector
uf #uid phase displacement vector
vs solid frame displacement vector of test function
vf #uid phase displacement vector of test functions
u six-dimensional displacement vector
v six-dimensional displacement vector of test functions
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x
k

Cartesian co-ordinate component in direction k
x co-ordinate vector x"Mx

k
N

Greek letters

k LameH elastic parameter shear modulus
j LameH elastic parameter
o
11

corrected mass density for the solid phase
o
12

inertial coupling factor
o
22

corrected mass density of the #uid phase / porosity
p
ij

Cauchy stress tensor
u angular velocity
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